Discontinuous nonequilibrium phase transitions in a nonlinearly pulse-coupled excitable lattice model.

نویسندگان

  • Vladimir R V Assis
  • Mauro Copelli
چکیده

We study a modified version of the stochastic susceptible-infected-refractory-susceptible (SIRS) model by employing a nonlinear (exponential) reinforcement in the contagion rate and no diffusion. We run simulations for complete and random graphs as well as d-dimensional hypercubic lattices (for d=3,2,1). For weak nonlinearity, a continuous nonequilibrium phase transition between an absorbing and an active phase is obtained, such as in the usual stochastic SIRS model [Joo and Lebowitz, Phys. Rev. E 70, 036114 (2004)]. However, for strong nonlinearity, the nonequilibrium transition between the two phases can be discontinuous for d>or=2, which is confirmed by well-characterized hysteresis cycles and bistability. Analytical mean-field results correctly predict the overall structure of the phase diagram. Furthermore, contrary to what was observed in a model of phase-coupled stochastic oscillators with a similar nonlinearity in the coupling [Wood, Phys. Rev. Lett. 96, 145701 (2006)], we did not find a transition to a stable (partially) synchronized state in our nonlinearly pulse-coupled excitable elements. For long enough refractory times and high enough nonlinearity, however, the system can exhibit collective excitability and unstable stochastic oscillations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic Properties and Phase Transitions in a Spin-1 Random Transverse Ising Model on Simple Cubic Lattice

Within the effective-field theory with correlations (EFT), a transverse random field spin-1 Ising model on the simple cubic (z=6) lattice is studied. The phase diagrams, the behavior of critical points, transverse magnetization,  internal energy, magnetic specific heat are obtained numerically and discussed for different values of p the concentration of the random transverse field.

متن کامل

Nonlinearly driven transverse synchronization in coupled chaotic systems

Synchronization transitions are investigated in coupled chaotic maps. Depending on the relative weight of linear versus nonlinear instability mechanisms associated to the single map two different scenarios for the transition may occur. When only two maps are considered we always find that the critical coupling εl for chaotic synchronization can be predicted within a linear analysis by the vanis...

متن کامل

Chaotic synchronizations of spatially extended systems as nonequilibrium phase transitions.

Two replicas of spatially extended chaotic systems synchronize to a common spatio-temporal chaotic state when coupled above a critical strength. As a prototype of each single spatio-temporal chaotic system a lattice of maps interacting via power-law coupling is considered. Furthermore, each unit in the one-dimensional chain is linked to the corresponding one in the replica via a local coupling....

متن کامل

Criteria for the Convergence, Oscillation, and Bistability of Pulse Circulation in a Ring of Excitable Media

A discrete model based on a nonlinear difference equation (equivalent to a coupled map lattice of high dimension) is used to study the dynamics of a circulating pulse in a ring of excitable media, such as cardiac cells. Based on the global and local properties of monotonic restitution and dispersion curves, criteria are obtained for the asymptotic stability of the unique steady state (pulse cir...

متن کامل

ABSORBING STATE TRANSITIONS IN CLEAN AND DISORDERED LATTICE MODELS by MAN

Nonequilibrium systems can undergo continuous phase transitions between different steady states. These transitions are characterized by collective fluctuations over large distances and long times similar to the behavior of equilibrium critical points. They also can be divided into different universality classes according to their critical behavior. This dissertation considers two types of noneq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 80 6 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2009